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Abstract
Acoustic	 interactions	 are	 important	 for	 understanding	 intra-		 and	 interspecific	 com-
munication	in	songbird	communities	from	the	viewpoint	of	soundscape	ecology.	It	has	
been	suggested	that	birds	may	divide	up	sound	space	to	increase	communication	ef-
ficiency	in	such	a	manner	that	they	tend	to	avoid	overlap	with	other	birds	when	they	
sing.	We	are	interested	in	clarifying	the	dynamics	underlying	the	process	as	an	exam-
ple	of	complex	systems	based	on	short-	term	behavioral	plasticity.	However,	it	is	very	
problematic	to	manually	collect	spatiotemporal	patterns	of	acoustic	events	in	natural	
habitats	using	data	derived	from	a	standard	single-	channel	recording	of	several	spe-
cies	singing	simultaneously.	Our	purpose	here	was	to	investigate	fine-	scale	spatiotem-
poral	acoustic	interactions	of	the	great	reed	warbler.	We	surveyed	spatial	and	temporal	
patterns	of	several	vocalizing	color-	banded	great	reed	warblers	(Acrocephalus arundi-
naceus)	 using	 an	 open-	source	 software	 for	 robot	 audition	HARK	 (Honda	 Research	
Institute	Japan	Audition	for	Robots	with	Kyoto	University)	and	three	new	16-	channel,	
stand-	alone,	and	water-	resistant	microphone	arrays,	named	DACHO	spread	out	in	the	
bird’s	 habitat.	We	 first	 show	 that	 our	 system	estimated	 the	 location	 of	 two	 color-	
banded	individuals’	song	posts	with	mean	error	distance	of	5.5	±	4.5	m	from	the	loca-
tion	of	observed	song	posts.	We	then	evaluated	the	temporal	localization	accuracy	of	
the	songs	by	comparing	the	duration	of	 localized	songs	around	the	song	posts	with	
those	annotated	by	human	observers,	with	an	accuracy	score	of	average	0.89%	for	
one	bird	that	stayed	at	one	song	post.	We	further	found	significant	temporal	overlap	
avoidance	and	an	asymmetric	relationship	between	songs	of	the	two	singing	individu-
als,	using	transfer	entropy.	We	believe	that	our	system	and	analytical	approach	con-
tribute	to	a	better	understanding	of	fine-	scale	acoustic	interactions	in	time	and	space	
in	bird	communities.
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1  | INTRODUCTION

Acoustic	 interactions	 are	 important	 for	 understanding	 communica-
tion	 among	 species	 and	 individuals	 in	 songbird	 communities	 from	
the	 viewpoint	 of	 soundscape	 ecology	 (Gasc,	 Francomano,	 Dunning,	
&	Pijanowski,	2016).	In	particular,	the	temporal	dynamics	of	vocaliza-
tions	are	of	 interest	because	they	are	known	to	have	ecological	and	
behavioral	 implications	 (Catchpole	&	Slater,	2008).	Birds	may	divide	
up	sound	space	in	such	a	manner	that	they	tend	to	avoid	overlap	with	
the	 songs	of	other	bird	 species	or	 individuals	 in	order	 to	 communi-
cate	with	neighbors	efficiently.	There	have	been	empirical	studies	on	
the	temporal	sound	space	partitioning	or	overlap	avoidance	of	sing-
ing	 behaviors	 of	 song	 birds	 across	various	 time	 scales	 (Araya-	Salas,	
Wojczulanis-	Jakubas,	Phillips,	Mennill,	&	Wright,	2017;	Brumm,	2006;	
Cody	 &	 Brown,	 1969;	 Ficken,	 Ficken,	 &	 Hailman,	 1974;	 Fleischer,	
Boarman,	 &	 Cody,	 1985;	 Masco,	 Allesina,	 Mennill,	 &	 Pruett-	Jones,	
2016;	Planqué	&	Slabbekoorn,	2008;	Popp,	Ficken,	&	Reinartz,	1985;	
Suzuki,	Taylor,	&	Cody,	2012;	Yang,	Ma,	&	Slabbekoorn,	2014).	We	are	
interested	in	clarifying	the	dynamics	underlying	the	process	as	an	ex-
ample	of	complex	systems	based	on	short-	term	behavioral	plasticity	
(Tobias,	Planqué,	Cram,	&	Seddon,	2014)	from	both	theoretical	(Suzuki	
&	Arita,	2014)	and	empirical	standpoints	(Suzuki	&	Cody,	2015;	Suzuki,	
Hedley,	&	Cody,	2015).	Traditionally,	researchers	have	used	a	standard	
single-	channel	 microphone	 to	 record	 bird	 songs	 and	manually	 ana-
lyzed	the	recording	to	study	temporal	pattern	of	the	songs.	However,	
it	is	problematic	to	manually	collect	spatiotemporal	patterns	of	acous-
tic	events	in	natural	habitats	using	data	derived	from	a	single-	channel	
recording	of	several	species	singing	simultaneously.

Using	a	microphone	array	is	a	promising	approach	to	acoustically	
monitor	wildlife	that	produce	sounds	(Blumstein	et	al.,	2011)	because	
it	can	provide	directional	or	spatial	information	of	vocalizations	from	
recordings.	 There	 have	 been	 several	 empirical	 studies	 to	 spatially	
localize	 bird	 songs	 using	multiple	microphones	 for	 playback	 experi-
ments	 (Mennill,	 Battiston,	 &	Wilson,	 2012;	 Mennill,	 Burt,	 Fristrup,	
&	 Vehrencamp,	 2006)	 and	 localization	 of	 songs	 of	 antbirds	 in	 the	
2D	(Collier,	Kirschel,	&	Taylor,	2010)	and	3D	spaces	(Harlow,	Collier,	
Burkholder,	&	Taylor,	2013).	Araya-	Salas	et	al.	(2017)	recently	showed	
that	coordinated	singing	in	lekking	long-	billed	hermits	depends	on	the	
distance	between	individuals,	using	six	stereo	microphones	to	roughly	
estimate	the	distance	between	birds.	Hedley,	Huang,	and	Yao	(2017)	
also	 successfully	 showed	 a	 3D	 direction-	of-	arrival	 estimation	 of	 up	
to	four	simulated	birds	singing,	using	two	stereo	field	recorders.	Our	
intent	 is	 to	 further	 investigate	 the	usability	of	microphone	arrays	 to	
study	fine-	grained	spatiotemporal	 interactions	of	bird	songs	such	as	
for	soundscape	partitioning.

In	 this	 study,	 we	 investigated	 spatiotemporal	 patterns	 of	 the	
great	reed	warblers	(Acrocephalus arundinaceus,	GRWA)	by	combin-
ing	microphone	arrays	and	an	open-	source	 robot	audition	system	
for	 localization	 and	 separation.	The	 singing	 behavior	 of	 this	 spe-
cies	has	been	extensively	 investigated	because	of	the	rich	variety	
of	 song	 repertoires	 and	 its	 complexity	 (Forstmeier,	 Hasselquist,	
Bensch,	&	Leisler,	2006;	Forstmeyer	&	Leisler,	2004;	Hasselquist,	
Bensch,	 &	 von	 Schantz,	 1996).	 However,	 as	 far	 as	 we	 know,	 no	

study	has	quantitatively	discussed	 the	existence	of	 temporal	par-
titioning	of	the	sound	space	among	neighboring	individuals	of	this	
species.

We	 are	 developing	 an	 easily	 available	 and	 portable	 system	
called	HARKBird	(Suzuki,	Matsubayashi,	Hedley,	Nakadai,	&	Okuno,	
2016;	 Suzuki,	 Matsubayashi,	 Nakadai,	 &	 Okuno,	 2017).	 It	 auto-
matically	extracts	bird	 songs	and	provides	 the	direction	of	arrival	
(DOA)	of	each	localized	song,	both	of	which	are	useful	to	grasp	the	
soundscape	around	the	microphone	array.	HARKBird	consists	of	a	
standard	 laptop	PC	with	open-	source	software	 for	 robot	audition	
HARK	 (Honda	 Research	 Institute	 Japan	Audition	 for	 Robots	with	
Kyoto	 University;	 Nakadai,	 Okuno,	 &	 Mizumoto,	 2017;	 Nakadai	
et	al.,	2010)	combined	with	a	low-	cost	and	commercially	available	
microphone	array.

Here,	 we	 describe	 the	 use	 of	 HARKBird	 to	 localize	 singing	
birds	 in	 a	 2D	 space	 in	 the	 field.	A	 preliminary	 analysis	 of	 spatial	
localization	with	the	3	eight-	channel	microphone	arrays	showed	a	
reasonable	 accuracy	 in	 estimating	 the	 location	 of	 the	 song	 posts	
of	 the	 GRWAs	 (Matsubayashi	 et	al.,	 2017).	 In	 this	 study,	we	 use	
the	data	obtained	from	three	newly	developed	16-	channel,	stand-	
alone,	 and	water-	resistant	microphone	arrays,	named	DACHO,	 to	
automatically	record	bird	songs	 in	the	field	for	a	detailed	analysis	
on	its	intraspecific	competition.	We	also	improve	algorithms	for	lo-
calization.	We	first	report	the	performance	of	our	system.	We	then	
examine	 the	 temporal	 localization	performance	by	comparing	 the	
beginning	 and	 ending	 timing	 of	 localized	 song	with	manually	 an-
notated	data.	 Lastly,	we	examine	 the	 temporal	overlap	avoidance	
between	 the	 focal	 individuals	 based	 on	manually	 annotated	 data	
using	 randomization	 tests	 (Araya-	Salas	 et	al.,	 2017;	Masco	 et	al.,	
2016)	and	transfer	entropy	(Schreiber,	2000)	for	analyzing	the	 in-
formation	 flows	 in	 these	 complex	 systems	 (Bossomaier,	 Barnett,	
Harré,	&	Lizier,	2016).

2  | MATERIALS AND METHODS

2.1 | Bird observation

Males	of	GRWA	 (Figure	1)	declare	and	defend	 their	 territories	with	
loud	and	persistent	songs	during	 the	breeding	season.	Studies	have	
shown	that	the	repertoires	size	may	play	an	important	role	in	attract-
ing	females	and	to	warn	off	other	potential	rivals	in	the	neighborhood	
(Forstmeier	 et	al.,	 2006;	 Forstmeyer	 &	 Leisler,	 2004;	 Hasselquist	
et	al.,	1996).

We	 conducted	 a	 bird	 survey	 in	 18	May	 2016,	 during	 the	 early	
breeding	 season,	 on	 a	 bank	 of	 the	 Ibi	 river,	 Kaminogo	 district,	Mie	
prefecture	 in	 central	 Japan	 (35°34′59″N,	 136°06′29″E).	 Figure	2	
shows	a	map	of	the	study	site.	The	observations	were	conducted	over	
approximately	6	hr	starting	at	6:00	a.m.	Each	of	17	observation	ses-
sions	was	20	min	long.	Using	spotting	scopes,	observers	recorded	the	
identification	of	the	bird	based	on	the	color	bands	tagged	to	both	legs,	
location,	activities,	and	timing	of	each	activity	of	the	bird.	Observers	
determined	the	 location	of	each	bird	using	 landmarks	on	drone	 im-
agery	taken	by	ourselves	and	marked	posts	in	the	field.	Positions	of	
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landmarks	were	measured	using	a	GPS	 (Trimble	R10	GNSS;	Trimble	
Inc.,	 California,	 USA).	 It	 is	 difficult	 to	 identify	 the	 exact	 beginning	
and	end	of	each	song,	so	we	instead	reported	the	beginning	and	the	
end	 times	of	a	 sequential	 series	of	 songs	 including	short	breaks	 in-	
between	songs	typically	 lasting	for	a	 few	minutes	at	each	observed	
location.

Three	GRWA	males	within	our	study	area	had	been	captured	using	
a	mist	net	 for	 the	purpose	of	 this	 research	and	banded	 for	 identifi-
cation	prior	to	this	recording	experiment,	two	of	which	were	visually	

confirmed	 during	 recording	 sessions	 (Figure	1).	 We	 confirmed	 the	
presence	of	five	 individuals	at	one	point	of	our	experiments,	 two	of	
which	were	banded	males.	According	to	the	field	observation,	 there	
were	a	few	additional	males	 in	the	study	area,	at	 least	one	of	which	
was	visually	 confirmed	 to	 be	 a	male	without	 bands.	This	 unbanded	
male	briefly	 flew	 in	and	out	of	 the	study	area,	 typical	behavior	of	a	
young	 male	 floater	 in	 search	 of	 vacant	 territory	 (Mérő	 &	 Žuljević,	
2017).

Observed	 data	 were	 classified	 into	 four	 categories:	 the	 songs	
of	RYB,	RGY,	other	 individuals	 except	 for	RYB	and	RGY	 (OTH),	 and	
unknown	 individuals	 (UNK).	 RYB	 and	 RGY	 represent	 the	 songs	 of	
color-	banded	 individuals	whose	bands	 are	 red-	yellow-	blue	 and	 red-	
green-	yellow,	respectively.	OTH	includes	individuals	of	the	same	spe-
cies	that	were	not	color-	banded.	UNK	includes	individuals	of	GRWA,	
but	it	was	not	sure	whether	they	are	color-	banded	or	not;	thus,	it	may	
include	RYB	and	RGY.	In	cases	where	multiple	individuals	were	sing-
ing	simultaneously,	we	relied	on	 localized	results	 to	help	distinguish	
individuals.

2.2 | Recording with microphone arrays and song 
post localization

We	 used	 16-	channel,	 stand-	alone,	 and	 water-	resistant	 microphone	
arrays,	named	DACHO,	specifically	developed	 for	bird	observations	
in	the	field	(WILD-	BIRD-	SONG-	RECORDER;	SYSTEM	IN	FRONTIER	
Inc.,	Tokyo,	Japan).	Each	array	consists	of	16	microphones,	arranged	
within	an	egg-	shaped	frame,	which	 is	17	cm	 in	height	and	13	cm	 in	
width	 (Figure	3).	 It	 records	 using	 a	 16-	channel,	 16	 bit,	 16	kHz	 for-
mat.	Recorded	raw	data	are	stored	in	SD	cards	and	can	be	exported	
in	either	a	raw	or	wave	format	for	further	analysis	using	customized	
software	on	a	PC	to	which	the	array	is	connected	with	the	USB	inter-
face.	One	can	schedule	a	recording	by	preparing	the	time	settings	in	
a	micro-	SD	card.	See	Table	1	for	the	specification	of	the	microphone	
array.	We	placed	three	microphone	arrays	 in	the	reed	marsh	where	
the	GRWA	inhabit	(Figure	2)	and	conducted	a	scheduled	recording	for	
each	observation	session.

We	 used	 HARKBird1	 to	 estimate	 the	 DOA	 of	 the	 sound	
sources	acquired	 from	each	microphone	array.	The	 sound	source	
localization	 algorithm	 of	 HARK	 is	 based	 on	 the	 MUltiple	 SIgnal	
Classification	 (MUSIC)	 method	 (Schmidt,	 1986)	 using	 multiple	
spectrograms	 with	 the	 short-	time	 Fourier	 transformation.	 See	
Suzuki	et	al.	(2017)	for	additional	details	of	HARKBird	and	Nakadai	
et	al.	 (2017,	2010)	 for	HARK.	We	adjusted	 the	parameters	 to	 lo-
calize	songs	of	the	GRWAs	as	much	as	possible	while	suppressing	
other	sounds	(e.g.,	noise	and	songs	of	other	bird	species).2	An	ex-
ample	of	DOA	of	sound	sources	estimated	by	HARKBird	(Figure	4)	
shows	that	the	two	GRWA	individuals	were	singing	alternately	at	
directions	different	from	a	microphone	array.

We	used	an	 improved	algorithm	for	spatial	 localization	based	on	
the	one	adopted	in	Matsubayashi	et	al.	(2017)	(Figure	5).	At	each	time	
frame	DT	(=0.2	s)	of	the	localization	process,	we	assumed	that	a	half	
line	 arose	 from	 each	microphone	 array	 toward	 the	 DOA	 estimated	
sound	source.	We	used	the	center	of	mass	of	the	three	intersections	

F IGURE  1 A	color-	banded	individual	of	the	great	reed	warbler	
(RYB)

F IGURE  2 The	2D	imagery	of	the	study	area.	The	numbered	
circles	represent	the	location	of	the	three	16-	channel	microphone	
arrays
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of	 those	 three	half	 lines	as	 the	estimated	 location	of	a	2D	 localized	
sound	indicated	by	a	“+”	in	Figure	5.

Because	 multiple	 sound	 sources	 can	 be	 localized	 at	 each	 time	
frame,	we	have	to	exclude	cases	when	microphone	arrays	estimated	
DOA	of	different	sound	sources.	For	this	purpose,	we	adopted	the	2D	
localization	result	only	when	it	met	two	requirements.	First,	the	dis-
tances	between	all	 three	 intersections	were	equal	or	smaller	 than	R 
(=15	m)	(indicated	as	a	dotted	line).	Second,	the	begin	and	end	timing	
of	all	sound	sources	should	be	within	the	range	of	DB	(=6.0	s)	and	DE	
(=1.0	s),	respectively.	The	reason	that	we	used	a	large	DB	and	a	small	
DE	is	that	a	song	of	the	GRWA	begins	with	several	short	introductory	
notes	that	may	be	difficult	 to	 localize,	while	 it	ends	with	 loud	notes	
that	are	easily	localized.	Thus,	the	end	timing	is	a	good	signal	for	dis-
criminating	different	sound	sources.

Finally,	we	define	the	song	duration	of	the	spatially	localized	sound	
as	that	of	the	closest	microphone	array	to	the	center	of	mass,	where	
the	 sound	was	most	 clearly	 recorded.	 For	 example,	 in	 Figure	5,	 the	
song	duration	localized	by	the	microphone	array	1	was	used.	Note	that	
because	HARK	with	our	setting	requires	a	silence	of	0.8	s	 to	detect	
the	end	of	each	localized	sound,	we	reduced	the	estimated	duration	
of	songs	by	0.6	s.

From	 these	 results,	 we	 visualized	 spatial	 distributions	 of	 the	 lo-
cation	 of	 the	 localized	 sound	 sources	 and	 observed	 birds	 in	 all	 the	
17	 sessions	 (Figure	6).	We	 also	 calculated	 the	 distribution	 of	 these	
observed-	localized	distances	(Figure	7).	Specifically,	at	every	time	inter-
val	of	1	s,	we	measured	the	distance	between	each	observed	location	
and	the	localized	location	that	was	the	closest	to	the	observed	location	
and	visualized	a	histogram	of	this	distance	for	each	observed	individual.

2.3 | Temporal analysis

To	determine	whether	the	temporal	soundscape	partitioning	occurred	
between	RYB	and	RGY,	we	compared	the	durations	of	bouts	during	

which	 both	 individuals	 were	 observed	 and	 singing	 actively	 around	
their	 song	posts	 in	 seven	different	 sessions	 (Figure	8).	We	adopted	
these	 durations	 to	 extract	more	 direct	 and	 clearer	 interactions	 be-
tween	 these	 target	 individuals	 with	minimum	 interruption	 of	 other	
individuals	singing	in	the	neighborhood.

To	extract	the	temporal	dynamics	of	the	singing	behavior	of	these	
two	individuals,	we	presumed	that	sound	sources	localized	around	each	
bird’s	song	post	belong	to	that	bird.	Specifically,	we	used	the	sources	
within	the	range	of	15	m	(RYB)	and	10	m	(RGY)	from	the	locations	indi-
cated	with	“x”	in	Figure	6,	respectively.	We	adopted	the	larger	range	for	
RYB	because	this	individual	tended	to	move	more	frequently	around	his	
song	post,	whereas	the	other	one	remained	at	one	spot.	We	assigned	
these	sources	in	a	timeline	of	each	individual	assuming	that	there	was	
no	time	overlap	among	sound	sources.	In	case	of	multiple	overlapping	
song	intervals,	we	adopted	the	one	that	began	earlier.	Trained	research-
ers	visually	and	auditorily	examined	the	localization	performance	using	
Praat	 (Boersma,	 2001).	 In	 this	 annotation	 process,	we	manually	 ad-
justed	the	beginning	and	end	of	a	song,	added	mislocalized	sound,	and	
removed	sounds	that	were	not	the	songs	of	the	targets.

F IGURE  3 The	16-	channel	microphone	
arrays	(a)	Each	of	the	three	arrays	was	
placed	on	the	top	of	a	tripod	on	the	
riverbank.	(b)	The	geometry	of	the	
16-	channel	microphones	on	the	frame.	(c)	
The	internal	structure	of	the	array

(a) (b)

(c)

TABLE  1 The	specification	of	the	microphone	array

Channels 16

Sensitivity −18	±	3	dBV/Pa

SNR 63	dB(A)

Sampling	rate 16.0	kHz

Resolution 16	bit

Battery Li-	ion	(18650)	×	6

Memory 4	SD	card	slots

Size 170	mm	(height)	×	130	mm	(radius)

Weight 650	g

Power	consumption 2	mA	(stand	by),	400	mW	
(recording)
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Using	these	annotated	data,	we	calculated	the	localization	perfor-
mance	 by	 comparing	 the	 localized	 song	 durations	 and	 the	manually	
annotated	song	durations.	For	this	analysis,	we	classified	the	durations	
into	four	categories:	true	positive	(TP)	when	localized	songs	were	ac-
tually	observed,	false	positive	(FP)	when	songs	were	localized	but	not	
observed,	true	negative	(TN)	when	songs	were	not	localized	and	not	ob-
served,	and	false	negative	(FN)	when	songs	were	not	localized	but	actu-
ally	observed.	We	evaluated	the	accuracy	((TP+TN)/(TP+FP+TN+FN))	
of	 the	 results	 and	 ROC	 curves	 (defined	 by	 true-	positive	 rate	 (TP/
(TP+FN))	and	false-	positive	rate	(FP/(FP+TN))	of	individuals.

To	examine	whether	a	significant	temporal	overlap	avoidance	ex-
isted	among	these	individuals,	we	first	focused	on	the	solo	singing	du-
ration	during	which	only	one	individual	sang,	using	the	Monte	Carlo	
randomization	 test.	We	 defined	Xrand	 (X ∈ {RYB,	 RGY})	 as	 the	 ran-
domized	time	series	of	the	individual	X	during	which	the	duration	of	
nonsinging	intervals	were	randomly	shuffled	from	the	original	series.	
We	created	10,000	randomized	data	of	RYBrand	and	RGYrand	and	cal-
culated	the	solo	durations	for	all	data.	We	regarded	the	proportion	of	
these	solo	durations	that	was	larger	than	the	observed	duration	as	the	
p-	value	for	the	null	hypothesis	(no	significant	overlapping	and	avoiding	
overlap).	There	 exist	 two	possibilities	 in	which	 these	 individuals	 ac-
tively	avoid	overlap	or	actively	overlap	with	each	other.	We	regarded	
that	the	former	case	is	significant	when	the	p-	value	is	smaller	0.025	
and	the	latter	case	is	significant	when	the	p-	value	is	larger	than	0.975	
(two-	tailed	 test).	 However,	we	 expect	 that	 they	were	 singing	 alter-
nately	(and	thus	avoiding	overlaps)	according	to	human	observations.

We	 also	 used	 SONG	 (Song	 Overlap	 Null	 model	 Generator),	 a	
package	of	R	 (Masco	et	al.,	 2016),	 to	examine	whether	 there	was	 a	
significant	asymmetric	effect	from	one	individual	to	the	other.	Using	
SONG,	we	classified	the	overlapped	duration	of	the	two	individuals	(X 
and	Y)	 ‘s	songs	 into	two:	the	duration	during	which	a	target	 individ-
ual	X	began	to	sing	while	the	other	reference	individual	Y	was	singing	
(i.e.,	X	actively	overlapped	with	Y)	and	vice	versa.	We	created	10,000	
randomized	data	using	the	time	series	Xrand	and	Y,	and	calculated	the	
durations	during	which	the	randomized	target	individual	Xrand	actively	
overlapped	with	Y	 for	 all	 data.	We	defined	 the	proportion	of	 those	
durations	that	was	smaller	than	the	observed	value	as	the	p-	value	for	

F IGURE  4 An	example	of	DOA	estimation	of	sound	sources	by	HARKBird.	The	top	panel	shows	the	spectrogram	of	a	channel	of	the	original	
recording	for	about	40	s	in	the	session	13	recorded	by	the	second	microphone	array.	The	middle	panel	shows	the	MUSIC	spectrum,	which	
represents	the	confidence	level	of	the	sound	existence,	calculated	for	each	time	and	direction.	Each	line	in	the	bottom	panel	shows	the	time	and	
the	direction	of	the	localized	sources,	which	is	used	for	the	spatial	localization

F IGURE  5 Spatiotemporal	localization	of	sound	sources
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the	null	hypothesis.	That	is,	the	target	individual	significantly	avoided	
overlap	when	 the	p-	value	 is	 smaller	0.025	and	 the	 target	 individual	
actively	overlapped	when	the	p-	value	is	larger	than	0.975	(two-	tailed	
test).3

To	grasp	a	general	trend	of	overlap	avoidance	across	all	the	ses-
sions,	 we	 calculated	 a	 bootstrap	 estimate	 of	 expected–observed	
duration	of	overlap	for	each	individual,	using	the	data	from	all	seven	
sessions.

F IGURE  6 The	spatial	distribution	of	localized	locations	and	observed	locations	in	the	all	17	recording	sessions.	A	red	“+”	represents	the	
former	(i.e.,	localized)	and	colored	“o”	represents	the	latter	(i.e.,	observed).	Four	categories	of	the	observed	birds,	that	is,	RYB,	RGY,	OTH,	and	
UNK	are	color-	coded	by	yellow,	green,	orange,	and	gray,	respectively.	Blue	rectangles	represent	the	5	×	5	m2	area	in	which	more	than	10	sound	
sources	were	spatially	localized.	The	brighter	color	corresponds	to	the	larger	number	of	localized	sounds	within	the	area
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We	further	measured	the	 information	flow	from	one	 individual’s	
singing	behavior	to	another	using	transfer	entropy	(Schreiber,	2000),	
which	has	been	recently	used	to	analyze	information	flows	in	complex	
systems	(Bossomaier	et	al.,	2016).	Specifically,	this	measure	quantifies	
the	expected	amount	of	directional	 information	 flow	 from	one	 time	
series	to	another;	the	transfer	entropy	TY→X(k,	l)	from	a	discrete	time	
series	Yt =	{yt}t=1,2,…	to	another	discrete	time	series	Xt	=	{xt}t=1,2,….	Given	
the	 past	 k	 values	 of	Xt,	 the	 amount	 of	 reduction	 in	 the	 uncertainty	
about	the	future	value	of	Xt	(i.e.,	the	reduced	entropy	of	the	transition	
probability	of	Xt)	 by	knowing	 the	past	 l	values	of	Yt	 is	 calculated	as	
follows:

where xk
t
	and	yl

t
	denote	{xt−k+1,	…,	xt}	and	{yt−l+1,	…,	yt},	respectively.	

In	our	case,	X	and	Y	correspond	to	the	time	series	of	singing	behavior	
of	individuals	X	and	Y	when	we	calculated	the	information	flow	from	
the	source	individual	Y	to	the	sink	individual	X.	To	discretize	each	time	
series,	we	created	a	binary	time	series	by	assigning	a	binary	value	(1:	
singing	or	0:	not	singing)	to	each	0.5-	s	time	interval.4

For	a	 statistical	 test,	we	created	10,000	 randomized	data	using	
the	 time	 series	X	 and	Yrand	 and	 calculated	TEYrand→X(k,l)	 for	 all	 data.	
The p-	value	 for	 the	null	 hypothesis	 (i.e.,	 the	 information	 flow	 from	
Y	to	X	is	not	significantly	larger	than	randomized	ones)	refers	to	the	
proportion	of	calculated	values	that	is	larger	than	the	observed	value	
TEY→X	(k,	l).

We	expect	that	if	an	individual	X	actively	avoids	overlapping	with	
Y	 (in	 the	sense	above),	 the	singing	behavior	of	X	 is	expected	 to	de-
pend	 on	 the	 behavior	 of	Y,	 and	 thus,	 there	 should	 be	 a	 significant	

(1)TEY→X(k,l) =
∑

xk
t
,xt+1,y

l
t

log
p(xt+1|xkt ,y

l
t
)

p(xt+1|xkt )
,

F IGURE  7 The	distribution	of	observed-	localized	distance	of	songs	in	all	17	recording	sessions.	At	every	time	interval	of	1	s,	we	measured	
the	distance	between	each	observed	location	and	the	localized	location	that	was	the	closest	to	the	observed	location	and	visualized	a	histogram	
of	this	distance	for	each	observed	individual
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information	flow	from	Y	to	X.	In	other	words,	the	reference	and	target	
individuals	correspond	to	the	source	and	sink	individuals,	respectively.	
Because	 transfer	 entropy	 is	 itself	 asymmetric	measure	 and	 it	 is	 not	
natural	to	assume	that	the	information	flow	can	become	significantly	
smaller	than	that	in	the	cases	with	randomized	sources,	we	adopted	
one-	tailed	test	here.	We	also	calculated	a	bootstrap	estimate	of	ob-
served	value	(TE)–expected	(TErand)	value	of	transfer	entropy	for	each	
individual,	using	the	data	from	all	the	seven	sessions.

In	addition,	while	we	could	only	observe	a	single	duration	(100–
800	s)	 in	 the	session	17	 in	which	RYB,	RGY,	and	OTH	were	visually	
observed	and	actively	singing,	we	further	conducted	the	same	analysis	
on	possible	pairs	of	these	three	individuals	to	see	interactions	among	
them.

3  | RESULTS

3.1 | Spatiotemporal distribution

The	location	of	observed	birds	shows	that	two	color-	banded	individu-
als,	RYB	and	RGY,	tended	to	stay	and	sang	at	around	their	own	song	
posts	 (Figure	6).	 RYB	 sang	 in	 a	 tree	 and	RGY	 sang	within	 the	 reed	
bushes	at	the	waterfront.	UNK	and	OTH	were	sometimes	observed	
around	 RYB,	 implying	 that	 these	 individuals	 might	 have	 competed	
with	RYB	as	potential	rivals.

Areas	 in	 which	 sound	 sources	 (represented	 as	 “+”)	 were	 fre-
quently	 localized	 are	 located	 in	 close	 proximity	 to	 each	 bird’s	 song	
post	reported	by	human	observers,	showing	that	the	songs	of	these	

F IGURE  8 The	temporal	and	directional	distribution	of	localized	songs	and	observed	locations	in	the	all	17	recording	sessions.	The	horizontal	
axis	represents	time,	and	the	vertical	axis	represents	the	direction	from	the	center	of	mass	of	the	three	microphone	arrays.	The	observed	
durations	of	RYB,	RGY,	OTH,	and	UNK	are	indicated	by	thick	yellow,	green,	orange,	and	gray	lines,	respectively.	Localized	sound	sources	are	
shown	in	blue	lines,	whose	brightness	corresponds	to	the	distance	from	the	center	of	mass	of	the	three	arrays.	Double-	headed	arrows	represent	
durations	of	bouts	during	which	both	RYB	and	RGY	were	observed	and	singing	actively	around	their	song	posts	in	seven	different	sessions
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individuals	were	successfully	localized.	We	also	see	several	additional	
sound	sources	localized	within	the	study	area.	Those	distant	from	song	
posts	are	expected	to	be	vocalizations	of	other	species	or	environmen-
tal	noises.	Sounds	localized	in	between	the	song	posts	are	likely	to	be	
caused	by	a	triangulation	when	the	DOAs	of	different	sound	sources	
were	used.

There	 are	 bimodal	 peaks	 in	 the	 distribution	 of	 this	 observed-	
localized	 distance	 in	 all	 17	 sessions	 (Figure	7).	 The	 peak	 around	
4–12	m	corresponds	to	the	distribution	of	the	distance	between	the	
observed	bird	and	the	localized	location	of	his	song.	The	average	dis-
tances	 between	 the	 localized	 locations	 and	 the	 observed	 locations	
which	 were	 <30	m	 were	 RYB:	 8.334	±	4.814,	 RGY:	 3.514	±	2.904,	
OTH:	 10.31	±	4.921,	 UNK:	 9.431	±	5.098	 and	 (RYB	 and	 RGY):	
5.457	±	4.468.	The	distance	of	RYB,	OTH,	 and	UNK	 tended	 to	dis-
tribute	more	broadly	than	that	of	RGY.	This	implies	that	they	tended	
to	move	around	the	song	post	more	frequently	than	RGY,	but	human	
observers	cannot	easily	record	such	a	small	movement.

The	 second	 peak	 around	 50	m	 corresponds	 to	 the	 cases	where	
there	were	no	 sound	sources	around	 the	 song	posts.	However,	 this	
does	 not	 necessarily	 mean	 that	 the	 localization	 was	 unsuccessful,	
because	the	observed	song	duration	includes	not	only	multiple	song	
durations	but	also	includes	short	breaks	in-	between	songs	(explained	

below).	We	expect	that	the	most	of	the	sources	localized	from	about	
50	m	away	from	one	song	post	are	expected	to	be	the	localized	songs	
at	the	other	song	post.

In	 the	 temporal	 and	 directional	 distribution	 of	 localized	 sound	
sources	and	human	observations	in	all	17	sessions	(Figure	8),	most	of	
the	 localized	sound	sources	 (shown	 in	blue	 lines)	especially	 for	RYB	
and	 RGY	 aligned	well	 with	 human	 observations	 (indicated	 by	 thick	
lines).	 It	 should	be	noted	that	 the	 localization	results	are	more	fine-	
grained	than	human	observations	in	the	sense	that	they	included	the	
begin	and	end	timing	of	each	song.	Results	also	show	that	RGY	tended	
to	stay	at	a	fixed	location	while	singing	through	all	the	sessions	with-
out	any	conspecific	rival	around	his	song	post.	At	the	same	time,	RYB	
tended	to	move	frequently	around	his	song	post	with	potential	rivals	
such	as	the	one	coded	as	OTH	and	UNK.	Note	that	UNK	could	actually	
be	RYB	that	went	out	of	the	observer’s	sight	for	a	moment.	RYB	and	
OTH	were	expected	to	be	competing	for	their	song	posts.

3.2 | Temporal localization

To	evaluate	the	accuracy	of	temporal	dynamics	of	automatically	ex-
tracted	 song	durations,	we	examined	 the	durations	of	bouts	during	
which	both	 individuals	were	observed	to	be	singing	actively	around	
their	song	posts	in	seven	different	sessions.	These	durations	are	indi-
cated	by	double-	headed	arrows	in	Figure	8.	In	these	durations,	we	vis-
ually	confirmed	the	presence	of	the	two	singing	individuals,	RYB	and	
RGY.	However,	OTH	was	not	visually	confirmed	and	his	vocalization	
in	the	recordings	was	considerably	rarer	than	those	of	RYB	and	RGY.	
We	believe	that	these	conditions	allow	us	to	infer	direct	competition	
between	 the	 focal	 individuals.	As	 for	 the	effects	of	vocalizations	of	
other	species	on	the	great	reed	warbler,	we	believe	that	these	species	
dominated	the	acoustic	space	around	them	because	of	much	higher	
rate	of	their	vocalizations	and	their	loudness.

The	 comparison	 between	 annotated	 and	 localized	 song	 bouts	
showed	 that	 there	 was	 a	 large	 difference	 in	 the	 accuracy,	 true-	
positive	 and	 false-	positive	 rate	 of	 the	 song	 extraction	 between	 the	
two	(Figure	9).	The	songs	of	RGY,	the	one	that	sang	at	one	song	post,	
were	 successfully	 localized,	 indicated	by	high	 true-	positive	 rate	 and	
low	false-	positive	 rate,	which	 resulted	 in	high	accuracy	 in	 the	 range	
of	0.83	and	0.95	in	all	seven	sessions.	High	accuracy	supports	that	we	
can	rely	on	the	automatically	extracted	data	for	further	analyses	for	
this	individual,	although	they	still	need	a	minor	manual	correction	(e.g.,	
adjustment	of	the	beginning	and	end	of	a	song,	addition	of	mislocal-
ized	sounds,	removal	of	sounds	that	were	not	the	songs	of	the	targets).

In	contrast,	the	accuracy	of	the	extracted	songs	of	RYB	was	in	a	
wider	range	of	0.67	and	0.89,	which	is	lower	than	those	of	RGY.	This	
is	due	to	the	fact	that	true-	positive	rate	of	his	songs	was	lower	than	
that	of	RGY.	Lower	true-	positive	rate	was	attributed	to	the	behavior	
of	RYB.	This	 individual	 frequently	 flew	 around	his	 territory	 or	went	
behind	the	tree	where	his	song	post	was	located,	which	made	the	lo-
calization	difficult	and	 increased	FN.	The	 lower	accuracy	 is	also	due	
to	higher	false-	positive	rate.	This	could	be	caused	accidentally	when	
other	species	(e.g.,	Japanese	bush	warbler	(Horornis diphone),	Coal	Tit	
Periparus ater insularis)	or	other	males	of	the	GRWA	occasionally	sang	

F IGURE  9 A	comparison	between	annotated	and	localized	song	
durations.	We	classified	the	durations	into	four	categories:	true	
positive	(TP)	when	localized	songs	were	actually	observed,	false	
positive	(FP)	when	songs	were	localized	but	not	observed,	true	
negative	(TN)	when	songs	were	not	localized	and	not	observed,	
and	false	negative	(FN)	when	songs	were	not	localized	but	actually	
observed.	We	evaluated	the	accuracy	((TP+TN)/(TP+FP+TN+FN))	
of	the	results	and	ROC	curves	(defined	by	true-	positive	rate	(TP/
(TP+FN))	and	false-	positive	rate	(FP/(FP+TN))	of	individuals.	The	
number	next	to	each	point	represents	the	session	ID	of	each	
duration,	and	a	value	with	parenthesis	represents	accuracy	of	
localization	result	in	the	corresponding	duration



10  |     SUZUKI et al.

in	a	similar	direction	toward	the	microphone	1	because	songs	of	RYB	
and	 these	 individuals	 could	 be	 localized	 as	 a	 single	 source.	Despite	
these	 limitations,	 sufficient	 accuracy	 values	 indicate	 that	 they	 can	
serve	as	initial	estimates	for	successive	manual	annotation.

3.3 | Temporal overlap avoidance

Using	 annotated	 data,	 we	 investigated	 the	 temporal	 interactions	 be-
tween	RYB	and	RGY	based	on	their	annotated	song	timings	(Table	2).	
These	 two	 birds	 avoided	 overlapping	 indicated	 by	 their	 significantly	
longer	solo	singing	duration	than	expected	by	chance	in	almost	all	of	the	
seven	recording	sessions	(7,	12,	13,	15;	p	<	.001,	10,	11;	p <	.01).	This	
soundscape	partitioning	might	be	realized	by	the	asymmetric	tendency	
of	 the	 overlap	 avoidance	 behavior.	 Table	3	 shows	 that	 RGY	 actively	
avoided	to	begin	singing	while	RYB	was	singing	in	the	two	recording	ses-
sions	(7;	p	<	.001,	13;	p	<	.01).	In	contrast,	RYB	actively	avoided	RGY	in	
only	one	recording	session	(15;	p <	.01).	A	bootstrap	estimate	of	expected	
duration–observed	duration	of	overlap	for	each	individual	showed	that	

the	 values	 were	 significantly	 positive	 (mean	=	7.471,	 p	=	.005,	 95%	
CI	 [1.780,	12.06]	 (percentile	 confidence	 interval	 based	on	10,000	 re-
sampling)	(RYB);	mean	=	17.24,	p	=	.000,	95%	CI	[9.703,	26.13]	(RGY)),	
meaning	that	both	RYB	and	RGY	actively	avoided	an	overlap.	We	further	
calculated	a	bootstrap	estimate	of	 the	difference	 in	 the	observed/ex-
pected	ratio	of	overlapped	duration	between	RYB	and	RGY	over	all	the	
seven	sessions.	The	difference	was	significantly	positive	(mean	=	0.2272,	
p	=	.0086,	95%	CI	 [0.0490,	0.4098]),	showing	that	RGY	more	actively	
avoided	overlap	more	 frequently	 than	RYB	did.	Overall,	we	 conclude	
that	both	RYB	and	RGY	were	actively	avoiding	an	overlap.	Of	the	two,	
RGY	was	more	active	than	RYB	in	avoiding	the	opponent.

The	 information	 flow	 between	 the	 two	 individuals	 measured	
using	transfer	entropy	(Table	4)	shows	that	there	was	a	significant	in-
formation	 flow	 from	RYB	 to	 RGY	 in	 the	 four	 recording	 sessions	 (7,	
11,	 12,	 14;	p <	.05);	 thus,	 the	 future	 singing	behavior	 of	RGY	could	
be	predicted	by	the	behavior	of	RYB.	The	opposite	was	not	true	for	
the	 other	 case.	A	 bootstrap	 estimate	 of	 observed	value	 -		 expected	
value	of	transfer	entropy	for	each	individual	showed	that	the	value	of	

Session Duration (s) Vacant (s)
Overlapped 
(s) Solo (s) Solo_rnd (s) p- value

7 420 81.8 67.1 271.1 209.5 .0000**

10 466 102.1 88.1 275.7 230.5 .0075*

11 406 148.4 36.6 221.0 188.3 .0014*

12 646 186.7 85.0 374.3 311.9 .0002**

13 840 295.1 78.3 466.7 390.7 .0001**

14 226 55.9 41.7 128.5 108.5 .0460

15 290 83.8 21.8 184.5 138.4 .0000**

Single	asterisk	(*)	denotes	significance	at	p	<	0.01,	and	double	asterisk	(**)	denotes	significance	at	p	<	0.001.

TABLE  2 Temporal	soundscape	
partitioning

TABLE  3 The	asymmetric	and	active	overlap	avoidance

Session Reference Target Observed (s) Expected (s) p- value Expected–observed
Obs./exp. (RYB) 
- Obs./exp. (RGY)

7 RYB RGY 18.77 55.40 .0000** mean	=	17.24 
95%	CI	=	[9.703,	26.13] 
p	=	.0000**

mean	=	0.2272 
95%	CI	=	[0.0490,	0.4098] 
p	=	.0086*

10 46.66 57.31 .1605

11 14.29 25.31 .0328

12 39.70 56.94 .0293

13 26.03 57.08 .0015*

14 14.42 21.76 .1395

15 9.71 16.70 .0822

7 RGY RYB 48.34 41.67 .7829 mean	=	7.471 
95%	CI	=	[1.780,	12.06] 
p	=	.0051*

10 41.45 53.85 .1063

11 22.34 28.57 .1213

12 45.29 57.95 .0705

13 52.23 64.31 .0980

14 27.24 28.74 .4115

15 12.05 26.21 .0041*

“Expected-	observed”	represents	a	bootstrap	estimate	of	expected	duration-	observed	duration	of	overlap	for	each	individual,	using	the	data	from	all	the	
seven	sessions.	“obs./exp.	(RYB)-	obs./exp.	(RGY)”	represents	a	bootstrap	estimate	of	the	difference	in	the	observed/expected	ratio	of	overlapped	duration	
between	RYB	and	RGY.	Single	asterisk	(*)	denotes	significance	at	p	<	0.01,	and	double	asterisk	(**)	denotes	significance	at	p	<	0.001.
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RYB→RGY	was	significantly	positive	while	that	of	RGY→RYB	was	in-
significant	(mean	=	0.006083,	p	=	.000,	95%	CI	[0.003257,	0.009243]	
(RYB→RGY);	 mean	=	−0.0003615,	 p	=	.6303,	 95%	 CI	 [−0.002543,	
0.0018]	 (RGY→RYB)),	meaning	that	there	was	a	significant	 informa-
tion	flow	from	RYB	to	RGY.

It	should	be	noted	that	both	active	overlap	avoidance	and	the	in-
formation	 flow	demonstrated	a	 similar	 trend.	While	 the	 information	
transfer	 itself	does	not	 tell	us	about	 its	mechanism,	 the	 information	
flow	from	RYB	to	RGY	 is	expected	to	be	associated	with	 the	active	
overlap	avoidance	behavior	of	RGY,	which	depends	on	the	preceding	
song	of	RYB.

In	addition,	we	 further	conducted	 the	same	analysis	on	possible	
pairs	of	RYB,	RGY,	and	OTH	in	a	single	duration	(100–800	s)	in	the	ses-
sion	17	in	which	these	individuals	were	visually	observed	and	actively	
singing.	 Results	were	 summarized	 as	 follows:	 There	was	 significant	
overlap	 avoidance	 between	 all	 pairs	 (p	<	.025).	 However,	 RYB	 was	
neither	actively	overlapping	nor	avoid	overlapping	with	the	other	two	
individuals	while	both	RGY	and	OTH	were	actively	avoiding	overlap	
with	all	 the	others	 (p <	.025).	There	was	significant	 information	flow	
from	RYB	to	OTH,	OTH	to	RYB,	and	OTH	to	RGY	(p	<	.025).

These	 results	 show	 that	 RYB	 were	 not	 actively	 avoiding	 over-
lapping	with	 the	others,	while	RGY	and	OTH	were	actively	avoiding	
overlap	with	RYB.	This	supports	our	claim	that	there	exists	asymmetric	
relationship	among	them.	In	other	words,	RYB	was	a	driver	individual	
in	this	soundscape	of	GRWA	songs.

4  | DISCUSSION

We	 examined	 spatiotemporal	 relationship	 between	 two	 GRWAs	
in	 a	 natural	 habitat	 using	 three	 16-	channel	microphone	 arrays	 and	

open-	source	sound	source	localization	software	developed	for	robot	
audition,	 HARK.	 Our	 system	 successfully	 localized	 many	 songs	 of	
GRWA	that	sang	at	 two	different	song	posts	within	the	study	area.	
Despite	 a	 relatively	 large	 distance	 among	microphone	 arrays,	 each	
of	which	was	placed	30–70	m	apart	from	each	other	(Figure	6),	most	
songs	of	focal	individuals	(RYB	and	RGY)	were	localized	within	a	range	
of	5.5	±	4.5	m	away	from	the	location	of	observed	song	posts.

Mennill	et	al.	(2012)	constructed	an	array	of	multiple	commercial	
stereo	recorders	and	synchronized	recorded	sounds	derived	from	four	
Song	Meters	 (SM2-	GPS;	Wildlife	Acoustics	 Inc.,	Concord,	MA,	USA)	
to	generate	eight-	channel	data.	After	manually	extracting	wildlife	vo-
calizations,	they	estimated	the	spatial	 location	of	each	sound	source	
using	the	cross-	correlation	method.	Their	experiments	using	play	back	
calls	showed	that	the	locational	accuracy	was	much	higher	when	the	
sound	source	was	inside	the	area	enclosed	by	recorders,	as	compared	
to	outside	 the	boundary.	While	 the	 localization	 accuracy	highly	 de-
pends	on	ecological	situations	and	properties	of	 localized	songs,	the	
locational	accuracy	of	10.22	±	1.64	m	for	sounds	broadcasted	outside	
the	arrays	using	their	system	is	comparable	to	our	 localization	accu-
racy.	Collier	et	al.	 (2010)	achieved	much	higher	 localization	accuracy	
when	 they	 used	 the	 8	 four-	channel	 microphone	 arrays	 and	 simple	
sounds	within	the	perimeter	of	the	area.	We	expect	that	we	can	also	
obtain	much	higher	localization	accuracy	by	either	increasing	the	num-
ber	of	microphone	arrays	or	enclosing	focal	individuals	within	the	area	
surrounded	by	the	microphone	arrays.

Acoustic	monitoring	using	automatic	recording	devices	has	been	
of	 interest,	 but	 practical	 comparisons	 of	 manual	 and	 autonomous	
methods	 for	 bird	 vocalizations	 are	 still	 limited	 (Digby,	 Towsey,	 Bell,	
&	Teal,	 2013).	We	 extracted	 the	 temporal	 pattern	 of	 song	 bouts	 in	
which	two	color-	banded	individuals	were	actively	singing	at	their	song	
posts	using	the	 localized	results.	The	extracted	pattern	 included	the	

TABLE  4 The	transfer	entropy	from	an	individual	to	the	other

Session Source Sink TE TE_rnd p- value TE- TE_rnd

7 RYB RGY 0.0145 0.0034 .0258* mean	=	0.006083 
95%	CI	=	[0.003257,	0.009243] 
p	=	.0000*

10 0.0055 0.0032 .1761

11 0.0071 0.0018 .0255*

12 0.0089 0.0014 .0040*

13 0.0032 0.0010 .0559

14 0.0169 0.0045 .0375*

15 0.0048 0.0030 .2033

7 RGY RYB 0.0043 0.0030 .2244 mean	=	−0.0003615 
95%	CI	=	[−0.002543,	0.0018] 
p	=	.6303

10 0.0007 0.0028 .7012

11 0.0006 0.0024 .7602

12 0.0029 0.0015 .1586

13 0.0011 0.0014 .4126

14 0.0009 0.0064 .8381

15 0.0075 0.0029 .0816

TE	represents	transfer	entropy	from	the	source	individual	to	the	sink	individual,	and	TE_rnd	represents	the	corresponding	entropy	when	the	temporal	
dynamics	of	the	source	individual	was	randomized.	“TE-	TE_rnd”	represents	a	bootstrap	estimate	of	observed	value-	expected	value	of	transfer	entropy	for	
each	individual,	using	the	data	from	all	the	seven	sessions.	Single	asterisk	(*)	denotes	significance	at	p	<	0.05.
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begin	 and	 end	 time	 of	 each	 song,	which	 cannot	 be	 easily	 obtained	
from	human	observations.	 In	 our	 experiments,	 localization	 accuracy	
was	average	0.89%	for	one	bird	that	stayed	at	one	song	post,	and	it	
decreased	to	0.77%	for	the	other	one	that	frequently	moved	around	
his	territory.

As	far	as	we	know,	no	study	has	analyzed	the	fine-	grained	temporal	
dynamics	of	multiple	singing	birds	using	these	localization	results.	We	
expect	that	we	can	improve	the	localization	accuracy	under	challeng-
ing	conditions;	that	is,	multiple	individuals	are	singing	simultaneously	in	
the	similar	direction,	by	improving	localization	algorithms.	Localization	
accuracy	 reflected	 a	 large	 difference	 in	 singing	 behavior	 of	 the	 two	
GRWAs:	the	lower	accuracy	for	RYB	and	the	higher	accuracy	for	RGY.

The	difference	in	their	behaviors	might	be	affected	by	their	rela-
tionships	with	neighbors.	According	to	the	human	observations,	there	
were	no	other	individuals	around	the	song	post	of	RGY	and	there	were	
other	individuals	(OTH	and	UNK)	close	to	the	song	post	of	RYB.	Thus,	
there	might	have	existed	a	strong	competitive	 relationship	between	
RYB	and	the	neighbors,	which	forced	RYB	to	move	around	more	fre-
quently	than	RGY.	The	lower	extraction	accuracy	of	RYB	might	have	
attributed	to	such	constant	movements	of	RYB,	because	the	human	
observers	 cannot	 record	 each	of	 the	minor	 positional	 changes.	Our	
system	might	be	able	to	extract	such	detailed	spatial	 information	of	
individuals.

The	 temporal	 interactions	 among	 individuals,	 such	 as	 temporal	
overlap	 avoidance	 among	 neighboring	 birds	 (Araya-	Salas	 &	 Smith-	
Vidaurre,	2017;	Araya-	Salas	et	al.,	2017;	Brumm,	2006;	Cody	&	Brown,	
1969;	Ficken	et	al.,	1974;	Masco	et	al.,	2016;	Planqué	&	Slabbekoorn,	
2008;	Popp	et	al.,	1985;	Suzuki	et	al.,	2012;	Yang	et	al.,	2014),	have	
long	been	a	focus	of	interest	in	ornithology.	Analysis	shows	that	the	
two	GRWAs	were	singing	alternately	in	our	study	area.	We	also	found	
that	such	coordinated	singing	process	was	realized	by	asymmetric	ef-
fects	among	them.	The	randomization	tests	and	a	bootstrap	estimate	
of	the	duration	of	the	active	overlap	showed	that	RGY	more	actively	
avoided	overlapping	with	RYB,	while	the	RYB	seemed	less	affected	by	
RGY.	The	analysis	of	temporal	dynamics	of	RYB,	RGY,	and	OTH	further	
showed	that	RYB	were	not	actively	avoiding	overlap	with	all	the	oth-
ers	while	RGY	and	OTH	were	actively	avoiding	overlap	with	RYB.	This	
supports	our	 claim	 that	 there	exists	 asymmetric	 relationship	 among	
them.	In	other	words,	RYB	was	a	driver	individual	in	this	soundscape	
of	GRWA	songs.

Measuring	coordination	behaviors	among	birds	has	been	compli-
cated,	 because	distinguishing	vocal	 coordination	 from	patterns	 aris-
ing	by	chance	is	challenging	using	conventional	statistical	approaches	
(Araya-	Salas	et	al.,	2017;	Masco	et	al.,	2016).	Recently,	the	concept	of	
transfer	entropy	has	been	used	 to	analyze	asymmetric	 relationships	
among	components	of	various	complex	systems	(e.g.,	cellular	autom-
ata,	 small-	world	networks,	 and	 swarms;	Bossomaier	 et	al.,	 2016).	 In	
our	study,	the	statistical	analysis	of	information	transfer	from	one	in-
dividual	to	another	showed	a	similar	tendency	of	active	overlap	avoid-
ance.	A	stronger	information	flow	from	RYB	to	RGY	indicates	that	the	
future	behavior	of	RGY	can	be	predicted	more	accurately	by	knowing	
the	behavior	of	RYB.	We	could	extract	 these	 song-	by-	song	 interac-
tions	using	the	short	time	interval	(second)	to	discrete	continuous	time	

data.	Our	results	 imply	 that	 transfer	entropy	 is	useful	 for	measuring	
such	short-	term	interactions	based	on	the	behavioral	plasticity	in	bird	
vocalizations.

Interaction	networks	of	birds	are	also	a	topic	of	interest	(Stowell,	
Gill,	&	Clayton,	2016;	Tobias	et	al.,	2014).	Although	we	mainly	 fo-
cused	on	the	songs	of	two	focal	 individuals,	 it	 is	plausible	that	we	
should	investigate	the	songs	of	other	males	in	the	study	area	for	a	
full	assessment	of	the	complex	system	composed	of	multiple	birds.	
An	additional	analysis	on	three	individuals	RYB,	RGY,	and	OTH	sup-
ports	 our	 claim	 that	 there	 exists	 a	 directional	 network	of	 interac-
tions	among	them.	In	another	study	conducted	in	a	forest	in	Japan,	
we	 found	a	statistically	 significant	overlap	avoidance	 in	 three	bird	
species	and	a	symmetric	effect	from	one	species	to	another	(Suzuki	
et	al.,	 2017).	 We	 believe	 that	 large-	scale	 experiments	 using	 our	
system	enables	us	to	extract	spatiotemporal	behaviors	of	a	greater	
number	of	 individuals	to	obtain	a	network	of	the	information	flow	
as	well	as	spatial	relationships	among	them.	Actually,	we	conducted	
large-	scaled	experiments	using	a	greater	number	of	microphone	ar-
rays	in	the	field.	According	to	preliminary	analysis,	one	of	the	prob-
lems	of	the	current	2D	localization	method	based	on	triangulation	
is	a	combinatorial	explosion	of	possible	locations	of	sound	sources	
due	to	the	increased	number	of	DOAs	recognized	by	many	arrays.	It	
is	our	future	work	to	resolve	this	problem.

We	could	successfully	 localize	songs	of	the	great	reed	warbler	
for	 mainly	 two	 technical	 reasons,	 both	 of	 which	 were	 critical	 to	
avoid	localizing	unnecessary	sound	sources	including	songs	of	other	
species.	 First,	we	 could	 limit	 the	minimum	 frequency	 range	 rela-
tively	high.	Second,	we	could	use	the	threshold	values	for	MUSIC	
spectrum	relatively	 large.	Thus,	conducting	sound	source	 localiza-
tion	 with	 different	 species-	specific	 settings	 would	 enable	 us	 to	
obtain	vocalizations	of	other	species	effectively.	The	effectiveness	
of	tuning	localization	parameters	was	assessed	in	our	test	we	con-
ducted	for	forest	birds	(Suzuki	et	al.,	2016).	We	found	that	different	
species	were	 successfully	 localized	 depending	 on	 the	 settings	 of	
parameters.

In	 this	 study,	we	manually	 identified	 songs	 of	 neighboring	 indi-
viduals	 (i.e.,	RYB,	OTH,	 and	UNK)	using	both	automatic	 localization	
results	and	human	observation.	Automated	sound	recognition	is	a	re-
cent	development	in	bioacoustics	and	bird	monitoring	(Jahn,	Ganchev,	
Marques,	&	Schuchmann,	2017)	and	a	benchmark	problem	in	machine	
learning	(Goëau,	H.,	Vellinga,	Planqué,	&	Joly,	2016).	We	expect	that	
song	 classification	 based	 on	 localized	 and	 separated	 sound	 sources	
(Kojima,	Sugiyama,	Suzuki,	Nakadai,	&	Taylor,	2016)	will	contribute	to	
track	the	behaviors	of	conspecific	individuals	in	our	system.	Integrating	
these	techniques	into	our	automatic	localization	system	will	enable	us	
to	investigate	fine-	grained	acoustic	interactions	in	time	and	space	in	
bird	communities,	for	a	deeper	understanding	of	soundscape	ecology	
(Gasc	et	al.,	2016).
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ENDNOTES
1	http://www.alife.cs.is.nagoya-	u.ac.jp/~reiji/HARKBird/
2	We	used	(1)	the	expected	number	of	sound	sources	for	the	MUSIC	method:	
three	 sources,	 (2)	 the	 lower	 bound	 frequency	 for	 the	 MUSIC	 method:	
2,200	Hz,	and	(3)	the	threshold	for	source	tracking:	26.5.	See	(Suzuki	et	al.,	
2017)	or	the	website	of	HARKBird	for	the	details	of	each	parameter.

3	We	used	the	SONG	package	for	this	process,	but	adopted	a	different	defi-
nition	of	the	p-	value	from	the	one	adopted	in	(Masco	et	al.,	2016)	for	our	
primary	purpose,	as	described	in	the	main	text.

4	We	used	k =	l = 1.

ORCID

Reiji Suzuki  http://orcid.org/0000-0002-1953-2926 

REFERENCES

Araya-Salas,	M.,	&	Smith-Vidaurre,	G.	 (2017).	warbleR:	An	R	package	 to	
streamline	analysis	of	animal	acoustic	signals.	Methods in Ecology and 
Evolution,	8,	184–191.	https://doi.org/10.1111/2041-210X.12624

Araya-Salas,	M.,	Wojczulanis-Jakubas,	K.,	Phillips,	E.	M.,	Mennill,	D.	J.,	&	
Wright,	T.	F.	(2017).	To	overlap	or	not	to	overlap:	Context-	dependent	
coordinated	 singing	 in	 lekking	 long-	billed	 hermits.	Animal Behaviour,	
124,	57–64.	https://doi.org/10.1016/j.anbehav.2016.12.003

Blumstein,	D.,	Mennill,	D.	J.,	Clemins,	P.,	Girod,	L.,	Yao,	K.,	Patricelli,	G.,	…	
Kirshel,	A.	N.	G.	(2011).	Acoustic	monitoring	in	terrestrial	environments	
using	 microphone	 arrays:	 Applications,	 technological	 considerations	
and	 prospectus.	 Journal of Applied Ecology,	48,	 758–767.	 https://doi.
org/10.1111/j.1365-2664.2011.01993.x

Boersma,	P.	(2001).	Praat,	a	system	for	doing	phonetics	by	computer.	Glot 
International,	5,	341–345.

Bossomaier,	T.,	Barnett,	L.,	Harré,	M.,	&	Lizier,	J.	T.	(2016).	An introduction to 
transfer entropy - information flow in complex systems.	Berlin,	Germany:	
Springer.	https://doi.org/10.1007/978-3-319-43222-9

Brumm,	H.	(2006).	Signalling	through	acoustic	windows:	Nightingales	avoid	
interspecific	 competition	 by	 short-	term	 adjustment	 of	 song	 timing.	
Journal of Comparative Physiology A: Neuroethology,	192,	1279–1285.	
https://doi.org/10.1007/s00359-006-0158-x

Catchpole,	C.	K.,	&	Slater,	P.	J.	B.	 (2008).	Bird song: Biological themes and 
variations.	 Cambridge,	 UK:	 Cambridge	 University	 Press.	 https://doi.
org/10.1017/CBO9780511754791

Cody,	M.	L.,	&	Brown,	J.	H.	(1969).	Song	asynchrony	in	neighbouring	bird	
species.	Nature,	222,	778–780.	https://doi.org/10.1038/222778b0

Collier,	T.	C.,	Kirschel,	A.	N.	G.,	&	Taylor,	C.	E.	(2010).	Acoustic	localization	
of	antbirds	in	a	Mexican	rainforest	using	a	wireless	sensor	network.	The 
Journal of the Acoustical Society of America,	128,	182–189.	https://doi.
org/10.1121/1.3425729

Digby,	A.,	Towsey,	M.,	 Bell,	 B.	D.,	 &	Teal,	 P.	D.	 (2013).	A	 practical	 com-
parison	 of	 manual	 and	 autonomous	 methods	 for	 acoustic	 moni-
toring.	 Methods in Ecology and Evolution,	 4,	 675–683.	 https://doi.
org/10.1111/2041-210X.12060

Ficken,	R.	W.,	Ficken,	M.	S.,	&	Hailman,	J.	P.	(1974).	Temporal	pattern	shifts	
to	avoid	acoustic	interference	in	singing	birds.	Science,	183,	762–763.	
https://doi.org/10.1126/science.183.4126.762

Fleischer,	R.	C.,	Boarman,	W.	I.,	&	Cody,	M.	L.	(1985).	Asynchrony	of	song	
series	 in	 the	Bewick’s	wren	and	wrentit.	Animal Behaviour,	33,	 674–
676.	https://doi.org/10.1016/S0003-3472(85)80095-6

Forstmeier,	 W.,	 Hasselquist,	 D.,	 Bensch,	 S.,	 &	 Leisler,	 B.	 (2006).	 Does	
song	 reflect	 age	 and	 viability?	 A	 comparison	 between	 two	 popula-
tions	of	 the	great	 reed	warbler	Acrocephalus arundinaceus. Behavioral 
Ecology and Sociobiology,	 59,	 634–643.	 https://doi.org/10.1007/
s00265-005-0090-z

Forstmeyer,	W.,	&	Leisler,	B.	(2004).	Repertoire	size,	sexual	selection,	and	
offspring	viability	in	the	great	reed	warbler:	Changing	patterns	in	space	
and	 time.	Behavioral Ecology,	 15,	 555–563.	 https://doi.org/10.1093/
beheco/arh051

Gasc,	A.,	Francomano,	D.,	Dunning,	J.	B.,	&	Pijanowski,	B.	C.	(2016).	Future	
directions	 for	 soundscape	 ecology:	The	 importance	 of	 ornithological	
contributions.	The Auk,	134,	215–228.

Goëau,	H.,	H.,	G.,	Vellinga,	W.	P.,	Planqué,	R.,	&	Joly,	A.	(2016)	LifeCLEF	Bird	
Identification	Task	2016:	The	arrival	of	Deep	learning.	LifeCLEF	2016	
working	notes.

Harlow,	Z.,	Collier,	T.,	Burkholder,	V.,	&	Taylor,	C.	E.	(2013)	Acoustic	3d	lo-
calization	of	a	tropical	songbird.	IEEE	China	Summit	and	International	
Conference	 on	 Signal	 and	 Information	 Processing	 (ChinaSIP),	 pp.	
220–224.

Hasselquist,	 D.,	 Bensch,	 S.,	 &	 von	 Schantz,	 T.	 (1996).	 Correlation	 be-
tween	 male	 song	 repertoire,	 extra-	pair	 paternity	 and	 offspring	 sur-
vival	 in	 the	 great	 reed	 warbler.	 Nature,	 381,	 229–232.	 https://doi.
org/10.1038/381229a0

Hedley,	R.	W.,	Huang,	Y.,	&	Yao,	K.	(2017).	Direction-	of-	arrival	estimation	
of	animal	vocalizations	for	monitoring	animal	behavior	and	improving	
estimates	of	abundance.	Avian Conservation and Ecology,	12,	6.	https://
doi.org/10.5751/ACE-00963-120106

Jahn,	 O.,	 Ganchev,	 T.	 D.,	 Marques,	 M.	 I.,	 &	 Schuchmann,	 K.	 L.	 (2017).	
Automated	 sound	 recognition	 provides	 insights	 into	 the	 behav-
ioral	ecology	of	a	 tropical	bird.	PLoS ONE,	12,	e0169041.	https://doi.
org/10.1371/journal.pone.0169041

https://doi.org/10.5061/dryad.n378d
https://doi.org/10.5061/dryad.n378d
http://orcid.org/0000-0002-1953-2926
http://orcid.org/0000-0002-1953-2926
https://doi.org/10.1111/2041-210X.12624
https://doi.org/10.1016/j.anbehav.2016.12.003
https://doi.org/10.1111/j.1365-2664.2011.01993.x
https://doi.org/10.1111/j.1365-2664.2011.01993.x
https://doi.org/10.1007/978-3-319-43222-9
https://doi.org/10.1007/s00359-006-0158-x
https://doi.org/10.1017/CBO9780511754791
https://doi.org/10.1017/CBO9780511754791
https://doi.org/10.1038/222778b0
https://doi.org/10.1121/1.3425729
https://doi.org/10.1121/1.3425729
https://doi.org/10.1111/2041-210X.12060
https://doi.org/10.1111/2041-210X.12060
https://doi.org/10.1126/science.183.4126.762
https://doi.org/10.1016/S0003-3472(85)80095-6
https://doi.org/10.1007/s00265-005-0090-z
https://doi.org/10.1007/s00265-005-0090-z
https://doi.org/10.1093/beheco/arh051
https://doi.org/10.1093/beheco/arh051
https://doi.org/10.1038/381229a0
https://doi.org/10.1038/381229a0
https://doi.org/10.5751/ACE-00963-120106
https://doi.org/10.5751/ACE-00963-120106
https://doi.org/10.1371/journal.pone.0169041
https://doi.org/10.1371/journal.pone.0169041


14  |     SUZUKI et al.

Kojima,	R.,	Sugiyama,	O.,	Suzuki,	R.,	Nakadai,	K.,	&	Taylor,	C.	E.	 (2016)	
Semi-automatic	bird	song	analysis	by	spatial-cue-based	 integration	
of	 sound	 source	 detection,	 localization,	 separation,	 and	 identifica-
tion.	 C.	Di	 Chio	 (Ed.),	 Proceedings	 of	 2016	 IEEE/RSJ	 International	
Conference	 on	 Intelligent	 Robots	 and	 Systems	 (IROS-2016),	 pp.	
1287–1292.

Masco,	C.,	Allesina,	S.,	Mennill,	D.	J.,	&	Pruett-Jones,	S.	 (2016).	The	song	
overlap	null	model	generator	(song):	A	new	tool	for	distinguishing	be-
tween	random	and	non-	random	song	overlap.	Bioacoustics,	25,	29–40.	
https://doi.org/10.1080/09524622.2015.1079734

Matsubayashi,	S.,	Suzuki,	R.,	Saito,	F.,	Murate,	T.,	Masuda,	T.,	Yamamoto,	
K.,	…	Okuno,	H.	G.	(2017).	Acoustic	monitoring	of	the	great	reed	war-
bler	 using	multiple	microphone	 arrays	 and	 robot	 audition.	 Journal of 
Robotics and Mechatronics,	 27,	 224–235.	 https://doi.org/10.20965/
jrm.2017.p0224

Mennill,	D.	 J.,	 Battiston,	M.,	&	Wilson,	D.	 R.	 (2012).	 Field	 test	 of	 an	 af-
fordable,	 portable,	 wireless	 microphone	 array	 for	 spatial	 monitoring	
of	animal	ecology	and	behaviour.	Methods in Ecology and Evolution,	3,	
704–712.	https://doi.org/10.1111/j.2041-210X.2012.00209.x

Mennill,	 D.	 J.,	 Burt,	 J.	 M.,	 Fristrup,	 K.	 M.,	 &	 Vehrencamp,	 S.	 L.	 (2006).	
Accuracy	of	an	acoustic	location	system	for	monitoring	the	position	of	
duetting	songbirds	in	tropical	forest.	The Journal of the Acoustical Society 
of America,	119,	2832–2839.	https://doi.org/10.1121/1.2184988

Mérő,	T.	O.,	&	Žuljević,	A.	(2017).	Improving	the	accuracy	of	estimates	of	
nesting	 population	 size	 by	 detailed	 censuses	 of	 active	 nests	 of	 the	
Great	Reed	Warbler.	Turkish Journal of Zoology,	41,	522–529.

Nakadai,	 K.,	 Okuno,	 H.	 G.,	 &	 Mizumoto,	 T.	 (2017).	 Development,	 de-
ployment	 and	 applications	 of	 robot	 audition	 open	 source	 software	
HARK.	 Journal of Robotics and Mechatronics,	 27,	 16–25.	 https://doi.
org/10.20965/jrm.2017.p0016

Nakadai,	 K.,	 Takahashi,	 T.,	 Okuno,	 H.	 G.,	 Nakajima,	 H.,	 Hasegawa,	 Y.,	
&	 Tsujino,	 H.	 (2010).	 Design	 and	 implementation	 of	 robot	 audi-
tion	 system	 ‘HARK’	 –open	 source	 software	 for	 listening	 to	 three	 si-
multaneous	 speakers.	 Advanced Robotics,	 24,	 739–761.	 https://doi.
org/10.1163/016918610X493561

Planqué,	R.,	&	Slabbekoorn,	H.	(2008).	Spectral	overlap	in	songs	and	tem-
poral	avoidance	in	a	peruvian	bird	assemblage.	Ethology,	114,	262–271.	
https://doi.org/10.1111/j.1439-0310.2007.01461.x

Popp,	J.	W.,	Ficken,	R.	W.,	&	Reinartz,	J.	A.	 (1985).	 Short-	term	 temporal	
avoidance	of	interspecific	acoustic	interference	among	forest	birds.	The 
Auk,	102,	744–748.

Schmidt,	R.	(1986).	Bayesian	nonparametrics	for	microphone	array	process-
ing.	IEEE Transactions on Antennas and Propagation (TAP),	34,	276–280.	
https://doi.org/10.1109/TAP.1986.1143830

Schreiber,	T.	(2000).	Measuring	information	transfer.	Physical Review Letters,	
85,	461–464.	https://doi.org/10.1103/PhysRevLett.85.461

Stowell,	D.,	Gill,	L.,	&	Clayton,	D.	(2016).	Detailed	temporal	structure	of	com-
munication	networks	in	groups	of	songbirds.	Journal of the Royal Society 
Interface,	13,	20160296.	https://doi.org/10.1098/rsif.2016.0296

Suzuki,	R.,	&	Arita,	T.	(2014).	Emergence	of	a	dynamic	resource	partitioning	
based	on	the	coevolution	of	phenotypic	plasticity	in	sympatric	species.	
Journal of Theoretical Biology,	 352,	 51–59.	 https://doi.org/10.1016/j.
jtbi.2014.02.035

Suzuki,	R.,	&	Cody,	M.	L.	 (2015)	Complex	systems	approaches	to	tempo-
ral	 soundspace	 partitioning	 in	 bird	 communities	 as	 a	 self-organizing	
phenomenon	based	on	behavioral	plasticity.	Proceedings	of	the	20th	
International	 Symposium	 on	Artificial	 Life	 and	 Robotics,	 pp.	 11–15.	
ALife	Robotics	Corporation	Ltd.

Suzuki,	R.,	Hedley,	R.,	&	Cody,	M.	L.	(2015)	Exploring	temporal	soundspace	
partitioning	in	bird	communities	emerging	from	inter-	and	intra-specific	
variations	 in	behavioral	plasticity	using	a	microphone	array.	Abstract	
Book	of	the	2015	Joint	Meeting	of	the	American	Ornithologists’	Union	
and	the	Cooper	Ornithological	Society,	p.	86.

Suzuki,	R.,	Matsubayashi,	S.,	Hedley,	R.,	Nakadai,	K.,	&	Okuno,	H.	G.	(2016)	
Localizing	bird	songs	using	an	open	source	robot	audition	system	with	
a	microphone	array.	Proceedings	of	The	17th	Annual	Meeting	of	the	
International	 Speech	 Communication	 Association	 (INTERSPEECH	
2016),	pp.	2626–2630.	ISCA.

Suzuki,	R.,	Matsubayashi,	S.,	Nakadai,	K.,	&	Okuno,	H.	G.	(2017).	HARKBird:	
Exploring	acoustic	interactions	in	bird	communities	using	a	microphone	
array. Journal of Robotics and Mechatronics,	27,	 213–223.	https://doi.
org/10.20965/jrm.2017.p0213

Suzuki,	R.,	Taylor,	C.	E.,	&	Cody,	M.	L.	(2012).	Soundscape	partitioning	to	
increase	 communication	 efficiency	 in	 bird	 communities.	Artificial Life 
and Robotics,	17,	30–34.	https://doi.org/10.1007/s10015-012-0014-8

Tobias,	 J.	A.,	 Planqué,	 R.,	 Cram,	 D.	 L.,	 &	 Seddon,	 N.	 (2014).	 Species	 in-
teractions	 and	 the	 structure	 of	 complex	 communication	 networks.	
Proceedings of the National Academy of Sciences,	 111,	 1020–1025.	
https://doi.org/10.1073/pnas.1314337111

Yang,	 X.,	 Ma,	 X.,	 &	 Slabbekoorn,	 H.	 (2014).	 Timing	 vocal	 behaviour:	
Experimental	 evidence	 for	 song	 overlap	 avoidance	 in	 Eurasian	
Wrens.	Behavioural Processes,	103,	 84–90.	 https://doi.org/10.1016/j.
beproc.2013.11.011

How to cite this article:	Suzuki	R,	Matsubayashi	S,	Saito	F,	
et	al.	A	spatiotemporal	analysis	of	acoustic	interactions	
between	great	reed	warblers	(Acrocephalus arundinaceus)	using	
microphone	arrays	and	robot	audition	software	HARK.	Ecol 
Evol. 2017;00:1–14. https://doi.org/10.1002/ece3.3645

https://doi.org/10.1080/09524622.2015.1079734
https://doi.org/10.20965/jrm.2017.p0224
https://doi.org/10.20965/jrm.2017.p0224
https://doi.org/10.1111/j.2041-210X.2012.00209.x
https://doi.org/10.1121/1.2184988
https://doi.org/10.20965/jrm.2017.p0016
https://doi.org/10.20965/jrm.2017.p0016
https://doi.org/10.1163/016918610X493561
https://doi.org/10.1163/016918610X493561
https://doi.org/10.1111/j.1439-0310.2007.01461.x
https://doi.org/10.1109/TAP.1986.1143830
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1098/rsif.2016.0296
https://doi.org/10.1016/j.jtbi.2014.02.035
https://doi.org/10.1016/j.jtbi.2014.02.035
https://doi.org/10.20965/jrm.2017.p0213
https://doi.org/10.20965/jrm.2017.p0213
https://doi.org/10.1007/s10015-012-0014-8
https://doi.org/10.1073/pnas.1314337111
https://doi.org/10.1016/j.beproc.2013.11.011
https://doi.org/10.1016/j.beproc.2013.11.011
https://doi.org/10.1002/ece3.3645

